II. CONFIGURING THE INHIBITION INPUT

- The inhibition input is used to stop the detector process when the door must face a fixed obstacle at the end of its swing angle.
- Adjust the operator to open the door when the inhibition input is active before detecting the obstacle.

III. ANTI-MASKING TEST

- The sensor is open (without front cover).
- The antimasking function is activated (see adjustment of the functions) both in MASTER and SLAVES.
- Make sure there is no target in front of the sensor.
- Place the hole of the test paper in front of the reception lens of each module.
- The red LED does not light up, otherwise the configuration must not be used for this type of environment.

MONITORED VERSION

- FOR MONITORED VERSION ONLY:
 - Inputs 1 and 2 of the terminal box are properly wired and supplied.
 - The end-of-loop jumper is mounted on the last SLAVE or MASTER module, if there are no SLAVES.
 - If the surveillance option is not used, move the end-of-loop jumper on the surveillance cancellation jumper terminals 1 and 2 are then unnecessary.

END OF INSTALLATION

- Place the connection sheath in the cap’s groove.
 1. Insert in the upper rail.
 2. Tighten the front part progressively.
 3. Fasten the second side cap.
 4. Screw the wall fixation fastener onto the fixed box, inserting the connection sheath in it.

TROUBLESHOOTING

SYMPTOMS: The door does not open. The red LED does not light up in the absence of a target. The door does not open. The red LED lights up. The detector detects erratically. You have problems inserting the module into the aluminium section. The door opens without taking detection into account. The red LED lights up. WARNING - this sensor is designed exclusively to make automatic doors safer.

CORRECTIVE ACTIONS: Check power supply. Check relay cabling (NO or NC). Check relay cabling (NO or NC). Decrease the detection distance. Check the module orientation. Check relay cabling. Check relay cabling (NO or NC). Check relay cabling (NO or NC).

TECHNICAL CHARACTERISTICS

- Technology: Active infrared (adjustable by linear movement swivelling cam).
- Detection distance: 0.7 m to 2.5 m.
- Detection mode: Presence (and movement).
- Detection duration (presence): Infinite.
- Special inputs: • System inhibition.
- Special outputs: • Relay output option: 12 to 24 V AC/DC ±10%.
- Response time: < 50 ms.
- Special outputs: • Transistor output option: 12 to 30 V DC ±10%.
- Power consumption: • Slave ON: 40 mA maximum.
- Power consumption: • Slave OFF: 30 mA maximum.
- Power consumption: • Master OFF: 30 mA maximum.
- Power consumption: • Max. voltage: 30 V DC.
- Power consumption: • Max. switching power: 30 W (DC) / 60 VA (AC).
- Power consumption: • Temperature range: -20°C to +50°C.
- Power consumption: • Immunity: Electromagnetic compatibility (EMC) 89/336/EEC and 92/31/EEC.
- Power consumption: • Dimensions: 340 x 700 x 900 mm (L) x 43.5 mm (H) x 47.5 mm (D).
- Power consumption: • Weight: 0.740 Kg (length 900 mm, 1 Master + 2 Slaves).
- Power consumption: • Weight: 0.620 Kg (length 700 mm, 1 Master + 1 Slave).
- Power consumption: • Connection sheath: 0.5 m.
- Power consumption: • Max. holding current: 0.1 s to 4.5 s (adjustable).
- Power consumption: • Switching speed (by jumper): 0.1 s to 4.5 s (adjustable).
- Power consumption: • Module fixations: Aluminium action.
- Power consumption: • Connection sheath: 0.5 m.
- Power consumption: • Dimensions: 340 x 700 x 900 mm (L) x 43.5 mm (H) x 47.5 mm (D).
- Power consumption: • Weight: 0.740 Kg (length 900 mm, 1 Master + 2 Slaves).
- Power consumption: • Weight: 0.620 Kg (length 700 mm, 1 Master + 1 Slave).
- Power consumption: • Connection sheath: 0.5 m.
- Power consumption: • Switching speed (by jumper): 0.1 s to 4.5 s (adjustable).
- Power consumption: • Module fixations: Aluminium action.
- Power consumption: • Connection sheath: 0.5 m.

OVER VIEW

TIPS FOR USE

- No objects shall be within the detection zone.
- Preferably, exposure to heavy rain must be avoided.

OCCUPING AND DISASSEMBLY OF THE SENSOR

- Un螺丝ide side caps.
- Remove the front cover by one of the sides.
- Remove the plastic module supports using a screwdriver after disconnecting the SLAVES.
- Remove the MASTER’s removable terminal block.

DESCRIPTION OF THE SENSOR

- Green LED transmitter optics.
- Red LED receiver optics.
- Link connector (INPUT).
- Link connector (OUTPUT).
- Adjustment screw for detection distance.
- Receiver (SECONDARY).
- Transmitter optics.
- Antimasking jumper (AND).
Each module (MASTER and SLAVE) is equipped with jumpers allowing configuration.

Master + Slave Anti-masking function

<table>
<thead>
<tr>
<th>Initial Adjustment</th>
<th>Activated</th>
<th>Not Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 s</td>
<td>0.1 s</td>
</tr>
<tr>
<td>MASTER</td>
<td>Dark ON</td>
<td>Light ON</td>
</tr>
<tr>
<td>SLAVE</td>
<td>Dark ON</td>
<td>Light ON</td>
</tr>
</tbody>
</table>

Master Operating mode

- DO: the relay is released on detection
- LO: the relay is activated on detection

Master Holding time potentiometer

- Increased holding time: 0.1 s

FOR CONTROLLED VERSION

End-of-loop jumper to be placed on the last slave of the link (or on the MASTER if no SLAVES).

I. Initial steps

1. Break the part of the cap (hinge side) to allow passage for the connection sheath.
2. Screw the cap on the section from the door hinge side.

II. Installation on swinging doors and revolving doors

- Drill two holes in the back of the aluminum section and in the door leaf (Use the groove to position the holes).
- Screw the screws on the sections from the door hinge side.
- Example of use on swinging doors.
- Example of use on revolving doors.

III. Application to increase safety of sliding doors or special uses

- Drill two holes in the upper part of the section.
- Example of use on a sliding door.

Fixing the profile on the leaf

1. Inserting and connecting the modules

- Reinsert the module(s) and make sure that the MASTER is on the hinge side.
- Connect the different modules together.
- WARNING: make sure that an input is connected to an output.
- REMARK: place the last SLAVE module (or the single MASTER) as close as possible from the sharp edge of the door.

PREPARING THE CONNECTION CABLE

- Drill a hole in the fixed part of the door for the passage of wires.
- Drill two 4 mm holes on each side of the hole for the passage of the wires (so fix the wall fixation fastener).
- Pass the wires through the connection sheath.
- Connect to the removable terminal strip of the MASTER.

CABLING THE SENSOR

- Connect the cables of the operator to the removable terminal.

WARNING: if an inductive load is connected (operator relay), put a protective diode.

REM ARK: if an inductive load is connected (operator relay), put a protective diode.

III. Application to increase safety of sliding doors or special uses

- Drill two holes in the upper part of the section.
- Example of use on a sliding door.

SENSOR TEST

1. **Detection distance adjustment**:

- Take the cardboard box of the EYE-TECH.
- Adjust the holding time potentiometer of the input to its minimum value.
- Place the box at 30 cm from the door and at a distance from the door determined by the module inclination angle.
- Move the box up and down and from left to right to estimate the dead zone.
- Using a screwdriver, rotate the distance detection adjustment screw to obtain the detection at ±10 cm (and vice-versa).
- Clockwise rotation by one notch increases the detection distance by ±10 cm (and inversely).
- Force the door to open.
- If the detection is observed in the absence of an obstacle, rotate the screw counterclockwise.
- When the adjustment is correct, set the holding potentiometer to the desired value (recommended value: 2).

OPTIONAL INPUTS

- Power supply: 12 to 24 V AC/DC ±10%

REACT VERSIONS

- Power supply: 12 to 30 V DC ±10%

TRANSISTOR VERSIONS

- Power supply: 12 to 30 V DC ±10%

End-of-travel inhibitor input

OPTIONAL INPUTS

- Power supply: 12 to 18 V DC

REACT VERSIONS

- Power supply: 12 to 18 V DC

OPTIONAL INPUTS

- Power supply: 12 to 18 V DC

OVERVIEW OF THE SENSING FIELD AS A FUNCTION OF MODULE PLACEMENT ANGLES

Choose the position of modules in the housings from the available positions described above.

RECOMMENDED ANGLE: 20°